matlab数值分析程序--高等数学,数值代数的matlab实现-文字版, matlab电子书, 和matlab 有关的电子书:

2.6 牛顿(Newton)切线法及其MATLAB程序

2.6  牛顿(Newton)切线法及其MATLAB程序

首先,选择一个接近函数f(x)零点的x_0,计算相应的f(x_0)和切线斜率f'(x_0)(这里f'表示函数f的导数)。然后我们计算穿过点(x_0, f(x_0))并且斜率为f'(x_0)的直线和x轴的交点的x坐标,也就是求如下方程的解:

f(x_0)= (x_0-x)\cdot f'(x_0)

我们将新求得的点的x坐标命名为x_1,通常x_1会比x_0更接近方程f(x)=0的解。因此我们现在可以利用x_1开始下一轮迭代。迭代公式可化简为如下所示:

x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}

已经证明,如果f'是连续的,并且待求的零点x是孤立的,那么在零点x周围存在一个区域,只要初始值x_0位于这个邻近区域内,那么牛顿法必定收敛。 并且,如果f'(x)不为0, 那么牛顿法将具有平方收敛的性能. 粗略的说,这意味着每迭代一次,牛顿法结果的有效数字将增加一倍。

欢迎转载,转载请注明来自一手册:http://yishouce.com/book/3/3020600.html
友情链接It题库(ittiku.com)| 版权归yishouce.com所有| 友链等可联系 admin#yishouce.com|粤ICP备16001685号-1